Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation | Nature Catalysis
Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation | Nature Catalysis

Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation | Nature Catalysis

  1. Lewis, N. S. Toward cost-efficient solar energy use. Science 315, 798–801 ( 2007 ) .
  2. Listorti, A., Durrant, J. & Barber, J. artificial photosynthesis : solar to fuel. Nat. Mater. 8, 929–930 ( 2009 ) .
  3. Hammarstrom, L. & Hammes-Schiffer, S. Artificial photosynthesis and solar fuels. Acc. Chem. Res. 42, 1859–1860 ( 2009 ) .
  4. Bard, A. J. & Fox, M. A. artificial photosynthesis : solar divide of body of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 ( 1995 ).
  5. Tachibana, Y., Vayssieres, L. & Durrant, J. Artificial photosynthesis for solar water-splitting. Nat. Photon. 6, 511–518 ( 2012 ) .
  6. House, R. L. et alabama. artificial photosynthesis : where are we now ? Where can we go ? J. Photochem. Photobiol. C 25, 32–45 ( 2015 ) .
  7. Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water burst. Chem. Soc. Rev. 43, 7520–7535 ( 2014 ) .
  8. Ran, J. et aluminum. Earth-abundant cocatalysts for semiconductor-based photocatalytic water system separate. Chem. Soc. Rev. 43, 7787–7812 ( 2014 ) .
  9. Hu, S. et alabama. An analysis of the optimum band gaps of light absorbers in incorporate bicycle-built-for-two photoelectrochemical water-splitting systems. Energy Environ. Sci. 6, 2984–2993 ( 2013 ) .
  10. Döscher, H., Geisz, J. F., Deutsch, T. G. & Turner, J. A. Sunlight absorption in water-efficiency and design implications for photoelectrochemical devices. Energy Environ. Sci. 7, 2951–2956 ( 2014 ) .
  11. Li, Y. et alabama. vertically aligned Ta3N5 nanorod arrays for solar‐driven photoelectrochemical water burst. Adv. Mater. 25, 125–131 ( 2013 ) .
  12. Li, Y. et aluminum. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5 % solar energy conversion efficiency. Nat. Commun. 4, 2566 ( 2013 ) .
  13. Liu, G. et alabama. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water separate. Energy Environ. Sci. 9, 1327–1334 ( 2016 ) .
  14. Pihosh, Y. et aluminum. Ta3N5-nanorods enabling highly efficient water system oxidation via advantageous light harvesting and charge collection. Energy Environ. Sci. 13, 1519–1530 ( 2020 ) .
  15. Hitoki, G. et alabama. Ta3N5 as a novel visible light-driven photocatalyst ( λ < 600 nanometer ). Chem. Lett. 31, 736–737 ( 2002 ) .
  16. Chun, W.-J. et aluminum. conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J. Phys. Chem. B 107, 1798–1803 ( 2003 ) .
  17. Ding, C., Shi, J., Wang, Z. & Li, C. Photoelectrocatalytic water separate : significance of cocatalysts, electrolyte, and interfaces. ACS Catal. 7, 675–688 ( 2016 ) .
  18. He, Y. et aluminum. What limits the performance of Ta3N5 for solar water splitting ? Chem 1, 640–655 ( 2016 ) .
  19. Wang, Z. et aluminum. overall water divide by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 1, 756–763 ( 2018 ) .
  20. Seo, J., Nishiyama, H., Yamada, T. & Domen, K. Visible‐light‐responsive photoanodes for highly active, stable water oxidation. Angew. Chem. Int. Ed. 57, 8396–8415 ( 2018 ) .
  21. Seo, J. et aluminum. Mg-Zr cosubstituted Ta3N5 photoanode for lower-onset-potential solar-driven photoelectrochemical water divide. J. Am. Chem. Soc. 137, 12780–12783 ( 2015 ) .
  22. Pei, L. et aluminum. Oriented growth of Sc-doped Ta3N5 nanorod photoanode achieving low-onset-potential for photoelectrochemical body of water oxidation. ACS Appl. Energy Mater. 1, 4150–4157 ( 2018 ) .
  23. Boettcher, S. W. et alabama. Photoelectrochemical hydrogen development using Si microwire arrays. J. Am. Chem. Soc. 133, 1216–1219 ( 2011 ) .
  24. Lin, Y. et alabama. Growth of p-type hematite by atomic layer deposition and its utilization for better solar body of water burst. J. Am. Chem. Soc. 134, 5508–5511 ( 2012 ) .
  25. Abdi, F. F. et aluminum. Efficient solar water system burst by enhance charge separation in a bismuth vanadate-silicon bicycle-built-for-two photoelectrode. Nat. Commun. 4, 2195 ( 2013 ) .
  26. Xie, Y., Wang, Y., Chen, Z. & Xu, X. Role of oxygen defects on the photocatalytic properties of Mg‐doped mesoporous Ta3N5. ChemSusChem 9, 1403–1412 ( 2016 ).
  27. Fukasawa, Y. et aluminum. synthesis of ordered porous graphitic‐C3N4 and regularly arranged Ta3N5 nanoparticles by using self‐assembled silica nanospheres as a primary template. Chem. Asian J. 6, 103–109 ( 2011 ) .
  28. Li, W.-K., Zhou, G.-D., Mak, T. C. W. & Mak, T. Advanced Structural Inorganic Chemistry ( Oxford Univ. Press, 2008 ) .
  29. Fu, G., Yan, S., Yu, T. & Zou, Z. Oxygen refer recombination defects in Ta3N5 water splitting photoanode. Appl. Phys. Lett. 107, 171902 ( 2015 ) .
  30. Cui, L., Wang, M. & Wang, Y. X. Nitrogen vacancies and oxygen substitution of Ta3N5 : first-principles investigation. J. Phys. Soc. Jpn 83, 114707 ( 2014 ) .
  31. Jing, T., Dai, Y., Ma, X., Wei, W. & Huang, B. Effects of intrinsic defects and extrinsic dope on the electronic and photocatalytic properties of Ta3N5. RSC Adv. 5, 59390–59397 ( 2015 ) .
  32. Harb, M. et aluminum. Tuning the properties of visible-light-responsive tantalum ( oxy ) nitride photocatalysts by non-stoichiometric compositions : a first-principles point of view. Phys. Chem. Chem. Phys. 16, 20548–20560 ( 2014 ) .
  33. Daryakenari, A. A. et alabama. Ethanol electro-oxidation on nanoworm-shaped Pd particles supported by nanographitic layers fabricated by electrophoretic deposition. RSC Adv. 5, 52578–52587 ( 2015 ) .
  34. Zimin, P. A., Kazanskii, L. P., Kleshnina, S. I. & Persiantseva, V. P. X-ray photoelectron spectroscopy of corrosion inhibitors on metallic surfaces 1. adsorption of chromates on magnesium alloys. Russ. Chem. Bull. 32, 876–880 ( 1983 ) .
  35. Arranz, A. & Palacio, C. Composition of tantalum nitride thin films grown by low-energy nitrogen implantation : a factor analysis learn of the Ta 4 f XPS core floor. Appl. Phys. A 81, 1405–1410 ( 2005 ) .
  36. Scandurra, A. et aluminum. Tantalum nitride thin movie resistors by humble temperature reactive sputtering for fictile electronics. Surf. Interface Anal. 40, 758–762 ( 2008 ) .
  37. Hara, M. et alabama. Ta3N5 and TaON thin films on Ta foil : open composition and constancy. J. Phys. Chem. B 107, 13441–13445 ( 2003 ) .
  38. Yang, X. et aluminum. Tantalum nitride electron‐selective liaison for crystalline silicon solar cells. Adv. Energy Mater. 8, 1800608 ( 2018 ) .
  39. Bartesaghi, D. et alabama. contest between recombination and extraction of free charges determines the meet factor of constituent solar cells. Nat. Commun. 6, 7083 ( 2015 ) .
  40. Nogami, G. Theory of capacitance-voltage characteristics of semiconductor electrodes with interface states. J. Electrochem. Soc. 133, 525–531 ( 1986 ) .
  41. Takata, T. et alabama. Visible-light-driven photocatalytic behavior of tantalum-oxynitride and nitride. Res. Chem. Intermed. 33, 13–25 ( 2007 ) .
  42. Liu, C. et alabama. Investigation of high operation TiO2 nanorod array perovskite solar cells. J. Mater. Chem. A 5, 15970–15980 ( 2017 ) .
  43. Cheng, Y. et alabama. The damaging effect of excess mobile ions in planar CH3NH3PbI3 perovskite solar cells. J. Mater. Chem. A 4, 12748–12755 ( 2016 ) .
  44. Tan, H. L., Wen, X., Amal, R. & Ng, Y. H. BiVO4 { 010 } and { 110 } relative exposure extent : governing factor of surface charge population and photocatalytic bodily process. J. Phys. Chem. Lett. 7, 1400–1405 ( 2016 ) .
  45. Kim, J. K. et alabama. Enhancing molybdenum : BiVO4 solar water splitting with patterned Au nanospheres by plasmon‐induced department of energy remove. Adv. Energy Mater. 8, 1701765 ( 2018 ) .
  46. Wang, C. et aluminum. Effects of interfacial layers on the photoelectrochemical properties of tantalum nitride photoanodes for solar water separate. J. Mater. Chem. A 4, 13837–13843 ( 2016 ) .
  47. Yang, M., MacLeod, M. J., Tessier, F. & DiSalvo, F. J. Mesoporous metal nitride materials prepared from bulk oxides. J. Am. Ceram. Soc. 95, 3084–3089 ( 2012 ).

    Read more: Oceans (Where Feet May Fail)

  48. Guo, X., Wang, L. & Tan, Y. Hematite nanorods Co-doped with Ru cations with different valence states as high performance photoanodes for water divide. Nano Energy 16, 320–328 ( 2015 ) .
  49. Ye, K.-H.et aluminum. Enhancing photoelectrochemical water divide by combining study function tuning and heterojunction mastermind. Nat. Commun. 10, 3687 ( 2019 ) ..
  50. Luo, Z. et alabama. Multifunctional nickel film protected n‐type silicon photoanode with high photovoltage for efficient and stable oxygen development reaction. Small Methods 3, 1900212 ( 2019 ) .
reference : https://marvelvietnam.com
Category : News